Hong-Yu Zhou

Hong-Yu Zhou, Ph.D. 周洪宇 博士

Tenure-Track Assistant Professor @ Tsinghua University 长聘教轨助理教授 @ 清华大学

About Me 个人简介

I am a tenure-track assistant professor and principal investigator in Biomedical Engineering at Tsinghua University.
Previously, I served as the founding member and Head of AI Systems at a2z radiology AI, and as a postdoctoral fellow at Harvard University, advised by Professor Pranav Rajpurkar. I obtained my Ph.D. from the University of Hong Kong in Computer Science, advised by Professor Yizhou Yu. I spent two years at Tencent as a research scientist. Before that, I received degrees from Nanjing University and Wuhan University.
我是清华大学生物医学工程学院的长聘教轨助理教授及AIMS课题组负责人。
在此之前,我曾担任 a2z radiology AI 的创始成员兼AI系统负责人,并在哈佛大学从事博士后研究,合作导师为 Pranav Rajpurkar教授。 我于香港大学计算机系获得博士学位,师从俞益洲教授。 之前,我作为研究科学家在腾讯公司工作过两年。 我分别在南京大学和武汉大学完成本硕阶段的学习。

About AIMS Lab 关于AIMS实验室

Our lab, AIMS (a.k.a. AI for Medicine at Scale), studies intelligence to curate scalable, trustworthy, and medically useful AI for healthcare. We are particularly interested in curating patient-AI ecosystems, encompassing embodied intelligent agents designed to improve the quality of healthcare delivery through direct patient-AI interactions. 🎬 Explore what we have built. 我创立的实验室 AIMS (AI for Medicine at Scale) 致力于通过人工智能技术构建可扩展、可信赖、具有临床实用价值的医疗决策支持系统。 🎬 查看我们最新工作的演示

We are actively recruiting self-motivated researchers at different levels, including Ph.D. students, Undergraduates, and Research Interns at Tsinghua. We also very much welcome people with clinical medical backgrounds or wearable device development experience to join. Please email me with your CV. 欢迎加入我们的团队!我们正在积极招募各个层次的研究人员,包括博士后、博士生、本科生和实习生。请发送您的简历和简短的自我介绍到我的邮箱。

Recent News 最新动态

July 2025 2025年7月
Our paper on benchmarking retinal anomaly detection, accepted by MICCAI 2025, is now available on arXiv. Congrats to Chenyu! 我们关于视网膜异常检测的论文被MICCAI接收。
June 2025 2025年6月
Our paper on efficient medical vision-language alignment in IEEE Transactions on Medical Imaging has been published online. Congrats to Chenyu! 我们关于医学视觉语言对齐的论文被IEEE Transactions on Medical Imaging正式在线发表。
May 2025 2025年5月
Our review on "Multimodal generative AI for interpreting 3D medical images and videos" in npj Digital Medicine has been published online. Congrats to Jung-Oh! 我们关于多模态生成式AI解读3D医学影像和视频的综述被npj Digital Medicine正式在线发表。
April 2025 2025年4月
Our paper on multimodal generative medical AI in Cell Reports Medicine has been published online. Congrats to Fei! 我们关于多模态生成式医学AI的论文被Cell Reports Medicine正式在线发表。 Our paper on dynamic neural networks in IEEE Transactions on Neural Networks and Learning Systems has been published online. Congrats to Meng! 我们关于动态神经网络的论文被IEEE Transactions on Neural Networks and Learning Systems正式在线发表。
March 2025 2025年3月
Our paper on building a large-scale multimodal dataset for medicine, accepted by International Conference on Learning Representations 2025, is available on arXiv. Congrats to Yunfei! 我们关于乳腺年龄估计的论文被Nature Communications正式在线发表。
February 2025 2025年2月
Our paper on predicting therapy response for breast cancer patients in IEEE Journal of Biomedical and Health Informatics has been published online. Congrats to Yuan! 我们关于预测乳腺癌新辅助治疗反应的论文被IEEE Journal of Biomedical and Health Informatics正式在线发表。
January 2025 2025年1月
Two papers on generative medical AI in Nature Medicine have been published online. One is about building self-improving medical foundations models, and the other is about evaluating large language models for patient interaction tasks. Congrats to Jinzhuo and Shreya! 我们关于自我进化的医学基础模型和大型语言模型在患者交互任务中的评估的两篇论文被Nature Medicine正式在线发表。

Awards and Honors 获奖情况

  • Stanford/Elsevier Top 2% Scientist 2024 斯坦福/Elsevier全球前2%科学家 2024
  • HKU Foundation Award for Outstanding Research Postgraduate Students (sole awardee from the CS department at HKU) 香港大学杰出研究奖 (香港大学计算机系唯一获得者)
  • HKU Foundation Publication Award 香港大学出版奖
  • ICMA (International Chinese MIC Association) PhD Fellowship Award (5 awardees worldwide) 国际华人影像计算协会博士奖 (全球5位获得者)
  • Champion (1/79) in Accurate Automated Spinal Curvature Estimation challenge, held in conjunction with MICCAI 冠军 (1/79) 在MICCAI举办的精确自动脊柱曲率估计挑战赛
  • Champion (1/638) in Segmentation of Thoracic Organs at Risk challenge, held in conjunction with ISBI 冠军 (1/638) 在ISBI举办的胸腔器官风险分割挑战赛
  • Champion (1/200) in AI4Health global Challenge, held by Thales group 冠军 (1/200) 在Thales集团举办的AI4Health全球挑战赛

Research Overview 研究概览

Our lab focuses on developing next-generation medical AI systems that can understand and integrate complex biomedical data to improve clinical decision-making and patient outcomes. We work at the intersection of machine learning, computer vision, and clinical medicine. 我们实验室专注于开发下一代医学AI系统,这些系统能够理解和整合复杂的生物医学数据, 以改善临床决策和患者预后。我们的工作处于机器学习、计算机视觉和临床医学的交叉领域。

Current Research Projects 当前研究项目

1. Foundation Models for Medical Imaging 1. 医学影像基础模型

We are developing large-scale foundation models that can understand diverse medical imaging modalities and clinical contexts. Our recent work on Swin-UMamba demonstrates state-of-the-art performance in medical image segmentation tasks. 我们正在开发能够理解多种医学成像模态和临床场景的大规模基础模型。 我们最近的Swin-UMamba工作在医学图像分割任务中展现了最先进的性能。

2. Multimodal Clinical Intelligence 2. 多模态临床智能

Building unified transformer architectures that can process and reason over multiple types of clinical data simultaneously, including radiographs, lab results, and clinical notes. Our IRENE model published in Nature Biomedical Engineering represents a breakthrough in this direction. 构建统一的transformer架构,能够同时处理和推理多种类型的临床数据, 包括X光片、实验室结果和临床记录。我们在Nature Biomedical Engineering发表的IRENE模型代表了这个方向的突破。

3. Self-Supervised Medical Representation Learning 3. 自监督医学表示学习

Developing novel self-supervised and cross-supervised learning methods that can leverage the vast amounts of unlabeled medical data to improve model performance and generalization. 开发新型自监督和交叉监督学习方法,能够利用大量无标签医学数据来提高模型性能和泛化能力。

Research Funding 研究资助

  • National Natural Science Foundation of China (NSFC) - Young Investigator Grant 国家自然科学基金青年科学基金项目
  • Tsinghua University Start-up Fund 清华大学启动基金
  • Beijing Municipal Science & Technology Commission 北京市科学技术委员会项目

Lab Members 现有成员

Advised Ph.D. Students 博士研究生

Currently recruiting outstanding Ph.D. students (starting from 2026/2027 fall) 正在招收优秀博士研究生(2026/2027秋季入学)

Co-advised Lab Members 联合指导学生

Linwei Chen (2025-Present, Postdoc@HKGAI)
Chenyu Lian (2024-Present, PhD@HKPU) → ICLR'23, TMI'25, MICCAI'25
Shuai Wu (2025-Present, PhD@HKU)
Jie Lin (2025-Present, PhD@Xiamen U)

Alumni 毕业生

Hao Yang (PhD@CAS) → Nature Biomedical Engineering (in press)
Yuan Gao (PhD@Netherlands Cancer Institute) → Nature Communications'24, MICCAI'24, IEEE JBHI'25
Xing Wang (PhD@Netherlands Cancer Institute) → Nature Communications (in press)
Weijian Huang (PhD@CAS) → Nature Communications'24
Chixiang Lu (Past: Undergraduate@HUST, Now: PhD@HKU) → ICCV'21, IPMI'21, TMI'22, TPAMI'23
Meng Lou (Past: Software Engineer@Deepwise, Now: PhD@HKU) → TNNLS'25, Neural Networks'25
Jiarun Liu (PhD@CAS) → MICCAI'24, TMI'24
Yunxiang Fu (Past: Undergraduate at HKU, Now: PhD@HKU) → ICLR'24
Kai Wang (PhD@PKU)
Jiaxin Wu (Past: Undergraduate@HKU, Now: Software Engineer@UBS)
Zixuan Shan (Past: Undergraduate@HKU, Now: MS@NYU)

Publications (without preprints) 论文发表(不含预印本)

View full publication list (including preprints) on Google Scholar在Google Scholar查看完整论文列表(包括预印本)

2025 2025年

An evaluation framework for clinical use of large language models in patient interaction tasks
Shreya Johri, Jaehwan Jeong, Benjamin A Tran, Daniel I Schlessinger, Shannon Wongvibulsin, Leandra A Barnes, Hong-Yu Zhou, Zhuo Ran Cai, Eliezer M Van Allen, David Kim, Roxana Daneshjou, Pranav Rajpurkar
Nature Medicine, 2025
Self-improving generative foundation model for synthetic medical image generation and clinical applications
Jinzhuo Wang, Kai Wang, Yunfang Yu, Yuxing Lu, Wenchao Xiao, Zhuo Sun, Fei Liu, Zixing Zou, Yuanxu Gao, Lei Yang, Hong-Yu Zhou, Hanpei Miao, Wenting Zhao, Lisha Huang, Lingchao Zeng, Rui Guo, Ieng Chong, Boyu Deng, Linling Cheng, Xiaoniao Chen, Jing Luo, Meng-Hua Zhu, Daniel Baptista-Hon, Olivia Monteiro, Ming Li, Yu Ke, Jiahui Li, Simiao Zeng, Taihua Guan, Jin Zeng, Kanmin Xue, Eric Oermann, Huiyan Luo, Yun Yin, Kang Zhang, Jia Qu
Nature Medicine, 2025
MetaGP: A Generative Foundation Model Integrating Electronic Health Records and Multimodal Imaging for Addressing Unmet Clinical Needs
Fei Liu, Hong-Yu Zhou, Kai Wang, Yunfang Yu, Yuanxu Gao, Zhuo Sun, Sian Liu, Shanshan Sun, Zixing Zou, Zhuomin Li, Bingzhou Li, Hanpei Miao, Yang Liu, Taiwa Hou, Manson Fok, Nivritti Gajanan Patil, Kanmin Xue, Ting Li, Eric Oermann, Yun Yin, Lian Duan, Jia Qu, Xiaoying Huang, Shengwei Jin, Kang Zhang
Cell Reports Medicine, 2025
Multimodal Generative AI for Interpreting 3D Medical Images and Videos
Jung-Oh Lee, Hong-Yu Zhou, Tyler M Berzin, Daniel K Sodickson, Pranav Rajpurkar
npj Digital Medicine, 2025
BenchReAD: A Systematic Benchmark for Retinal Anomaly Detection
Chenyu Lian, Hong-Yu Zhou, Zhanli Hu, Jing Qin
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2025
Efficient Medical Vision-Language Alignment Through Adapting Masked Vision Models
Chenyu Lian, Hong-Yu Zhou, Dongyun Liang, Jing Qin, Liansheng Wang
IEEE Transactions on Medical Imaging, 2025
Multi-Modal Longitudinal Representation Learning for Predicting Neoadjuvant Therapy Response in Breast Cancer Treatment
Yuan Gao, Tao Tan, Xin Wang, Regina Beets-Tan, Tianyu Zhang, Luyi Han, Antonio Portaluri, Chunyao Lu, Xinglong Liang, Jonas Teuwen, Hong-Yu Zhou, Ritse Mann
IEEE Journal of Biomedical and Health Informatics, 2025
TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Visual Recognition
Meng Lou, Shu Zhang, Hong-Yu Zhou, Sibei Yang, Chuan Wu, Yizhou Yu
IEEE Transactions on Neural Networks and Learning Systems, 2025
SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion Classification Using 3D Multi-Phase Imaging
Meng Lou, Hanning Ying, Xiaoqing Liu, Hong-Yu Zhou, Yuqin Zhang, Yizhou Yu
Neural Networks, 2025
MedTrinity-25M: A Large-Scale Multimodal Dataset with Multigranular Annotations for Medicine
Yunfei Xie, Ce Zhou, Lang Gao, Juncheng Wu, Xianhang Li, Hong-Yu Zhou, Sheng Liu, Lei Xing, James Zou, Cihang Xie, Yuyin Zhou
International Conference on Learning Representations (ICLR), 2025

2024 2024年

Enhancing Representation in Radiography-Reports Foundation Model: A Granular Alignment Algorithm Using Masked Contrastive Learning
Weijian Huang, Cheng Li, Hong-Yu Zhou, Hao Yang, Jiarun Liu, Yong Liang, Hairong Zheng, Shaoting Zhang, Shanshan Wang
Nature Communications, 2024
An Explainable Longitudinal Multi-Modal Fusion Model for Predicting Neoadjuvant Therapy Response in Women with Breast Cancer
Yuan Gao, Sofia Ventura-Diaz, Xin Wang, Muzhen He, Zeyan Xu, Arlene Weir, Hong-Yu Zhou, Tianyu Zhang, Frederieke H van Duijnhoven, Luyi Han, Xiaomei Li, Anna D’Angelo, Valentina Longo, Zaiyi Liu, Jonas Teuwen, Marleen Kok, Regina Beets-Tan, Hugo M Horlings, Tao Tan, Ritse Mann
Nature Communications, 2024
Concepts and Applications of Digital Twins in Healthcare and Medicine
Kang Zhang, Hong-Yu Zhou, Daniel T Baptista-Hon, Yuanxu Gao, Xiaohong Liu, Eric Oermann, Sheng Xu, Shengwei Jin, Jian Zhang, Zhuo Sun, Yun Yin, Ronald M Razmi, Alexandre Loupy, Stephan Beck, Jia Qu, Joseph Wu
Patterns, 2024
A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective
Chaoqi Chen, Yushuang Wu, Qiyuan Dai, Hong-Yu Zhou, Mutian Xu, Sibei Yang, Xiaoguang Han, Yizhou Yu
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024
Swin-UMamba†: Adapting Mamba-Based Vision Foundation Models for Medical Image Segmentation
Jiarun Liu, Hao Yang, Hong-Yu Zhou, Lequan Yu, Yong Liang, Yizhou Yu, Shaoting Zhang, Hairong Zheng, Shanshan Wang
IEEE Transactions on Medical Imaging, 2024
Swin-UMamba: Mamba-Based UNet with ImageNet-Based Pretraining
Jiarun Liu, Hao Yang, Hong-Yu Zhou, Yan Xi, Lequan Yu, Yizhou Yu, Yong Liang, Guangming Shi, Shaoting Zhang, Hairong Zheng, Shanshan Wang
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2024
Cross-Dimensional Medical Self-Supervised Representation Learning Based on a Pseudo-3D Transformation
Fei Gao, Siwen Wang, Churan Wang, Fandong Zhang, Hong-Yu Zhou, Yizhou Wang, Gang Yu, Yizhou Yu
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2024
Improving Neoadjuvant Therapy Response Prediction by Integrating Longitudinal Mammogram Generation with Cross-Modal Radiological Reports: A Vision-Language Alignment-Guided Model
Yuan Gao, Hong-Yu Zhou, Xin Wang, Tianyu Zhang, Luyi Han, Chunyao Lu, Xinglong Liang, Jonas Teuwen, Regina Beets-Tan, Tao Tan
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2024
Multimodal Self-Supervised Learning for Lesion Localization
Hao Yang, Hong-Yu Zhou, Cheng Li, Weijian Huang, Jiarun Liu, Yong Liang, Guangming Shi, Hairong Zheng, Qiegen Liu, Shanshan Wang
IEEE International Symposium on Biomedical Imaging (ISBI), 2024
MLIP: Medical Language-Image Pre-Training with Masked Local Representation Learning
Jiarun Liu, Hong-Yu Zhou, Cheng Li, Weijian Huang, Hao Yang, Yong Liang, Guangming Shi, Hairong Zheng, Shanshan Wang
IEEE International Symposium on Biomedical Imaging (ISBI), 2024
Enhancing Representation in Medical Vision-Language Foundation Models via Multi-Scale Information Extraction Techniques
Weijian Huang, Cheng Li, Hong-Yu Zhou, Jiarun Liu, Hao Yang, Yong Liang, Guangming Shi, Hairong Zheng, Shanshan Wang
IEEE International Symposium on Biomedical Imaging (ISBI), 2024

2023 2023年

A Transformer-Based Representation-Learning Model with Unified Processing of Multimodal Input for Clinical Diagnostics
Hong-Yu Zhou, Yizhou Yu, Chengdi Wang, Shu Zhang, Yuanxu Gao, Jia Pan, Jun Shao, Guangming Lu, Kang Zhang, Weimin Li
Nature Biomedical Engineering, 2023
A Unified Visual Information Preservation Framework for Self-Supervised Pre-Training in Medical Image Analysis
Hong-Yu Zhou, Chixiang Lu, Chaoqi Chen, Sibei Yang, Yizhou Yu
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023
nnFormer: Volumetric Medical Image Segmentation via a 3D Transformer
Hong-Yu Zhou, Jiansen Guo, Yinghao Zhang, Xiaoguang Han, Lequan Yu, Liansheng Wang, Yizhou Yu
IEEE Transactions on Image Processing, 2023
Protein Representation Learning via Knowledge Enhanced Primary Structure Modeling
Hong-Yu Zhou, Yunxiang Fu, Zhicheng Bian, Cheng Bian, Yizhou Yu
International Conference on Learning Representations (ICLR), 2023
Advancing Radiograph Representation Learning with Masked Record Modeling
Hong-Yu Zhou, Chenyu Lian, Liansheng Wang, Yizhou Yu
International Conference on Learning Representations (ICLR), 2023
Activate and Reject: Towards Safe Domain Generalization Under Category Shift
Chaoqi Chen, Luyao Tang, Leitian Tao, Hong-Yu Zhou, Yue Huang, Xiaoguang Han, Yizhou Yu
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023
DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning in Language Models
Ge Zheng, Bin Yang, Jiajin Tang, Hong-Yu Zhou, Sibei Yang
Advances in Neural Information Processing Systems, 2023
Advancing 3D Medical Image Analysis with Variable Dimension Transform Based Supervised 3D Pre-Training
Shu Zhang, Zihao Li, Hong-Yu Zhou, Jiechao Ma, Yizhou Yu
Neurocomputing, 2023

2022 2022年

Generalized Radiograph Representation Learning via Cross-Supervision Between Images and Free-Text Radiology Reports
Hong-Yu Zhou, Xiaoyu Chen, Yinghao Zhang, Ruibang Luo, Liansheng Wang, Yizhou Yu
Nature Machine Intelligence, 2022
GraVIS: Grouping Augmented Views From Independent Sources for Dermatology Analysis
Hong-Yu Zhou, Chixiang Lu, Liansheng Wang, Yizhou Yu
IEEE Transactions on Medical Imaging, 2022
MASS: Modality-Collaborative Semi-Supervised Segmentation by Exploiting Cross-Modal Consistency from Unpaired CT and MRI Images
Xiaoyu Chen, Hong-Yu Zhou, Feng Liu, Jiansen Guo, Liansheng Wang, Yizhou Yu
Medical Image Analysis, 2022
Relation Matters: Foreground-Aware Graph-Based Relational Reasoning for Domain Adaptive Object Detection
Chaoqi Chen, Jiongcheng Li, Hong-Yu Zhou, Xiaoguang Han, Yue Huang, Xinghao Ding, Yizhou Yu
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022
Attribute Surrogates Learning and Spectral Tokens Pooling in Transformers for Few-Shot Learning
Yangji He, Weihan Liang, Dongyang Zhao, Hong-Yu Zhou, Weifeng Ge, Yizhou Yu, Wenqiang Zhang
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022
Development and Validation of an Abnormality-Derived Deep-Learning Diagnostic System for Major Respiratory Diseases
Chengdi Wang, Jiechao Ma, Shu Zhang, Jun Shao, Yanyan Wang, Hong-Yu Zhou, Lujia Song, Jie Zheng, Yizhou Yu, Weimin Li
NPJ Digital Medicine, 2022
ProCo: Prototype-Aware Contrastive Learning for Long-Tailed Medical Image Classification
Zhixiong Yang, Junwen Pan, Yanzhan Yang, Xiaozhou Shi, Hong-Yu Zhou, Zhicheng Bian, Cheng Bian
International Conference on Medical Image Computing and Computer-Assisted Intervention, 2022
UNet-2022: Exploring Dynamics in Non-Isomorphic Architecture
Jiansen Guo, Hong-Yu Zhou, Liansheng Wang, Yizhou Yu
International Conference on Medical Imaging and Computer-Aided Diagnosis, 2022
Augmented Multi-Component Recurrent Graph Convolutional Network for Traffic Flow Forecasting
Chi Zhang, Hong-Yu Zhou, Qiang Qiu, Zhichun Jian, Daoye Zhu, Chengqi Cheng, Liesong He, Guoping Liu, Xiang Wen, Runbo Hu
ISPRS International Journal of Geo-Information, 2022

2021 2021年

Preservational Learning Improves Self-Supervised Medical Image Models by Reconstructing Diverse Contexts
Hong-Yu Zhou, Chixiang Lu, Sibei Yang, Xiaoguang Han, Yizhou Yu
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021
Generalized Organ Segmentation by Imitating One-Shot Reasoning Using Anatomical Correlation
Hong-Yu Zhou, Hualuo Liu, Shilei Cao, Dong Wei, Chixiang Lu, Yizhou Yu, Kai Ma, Yefeng Zheng
International Conference on Information Processing in Medical Imaging, 2021
SSMD: Semi-Supervised Medical Image Detection with Adaptive Consistency and Heterogeneous Perturbation
Hong-Yu Zhou, Chengdi Wang, Haofeng Li, Gang Wang, Shu Zhang, Weimin Li, Yizhou Yu
Medical Image Analysis, 2021
ConvNets vs. Transformers: Whose Visual Representations Are More Transferable?
Hong-Yu Zhou, Chixiang Lu, Sibei Yang, Yizhou Yu
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021
Bottom-Up Shift and Reasoning for Referring Image Segmentation
Sibi Yang, Meng Xia, Guanbin Li, Hong-Yu Zhou, Yizhou Yu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021
Learning to Discover Multi-Class Attentional Regions for Multi-Label Image Recognition
Bin-Bin Gao, Hong-Yu Zhou
IEEE Transactions on Image Processing, 2021
Recist-Net: Lesion Detection via Grouping Keypoints on Recist-Based Annotation
Cong Xie, Shilei Cao, Dong Wei, Hong-Yu Zhou, Kai Ma, Xianli Zhang, Buyue Qian, Liansheng Wang, Yefeng Zheng
2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021
Evaluation and Comparison of Accurate Automated Spinal Curvature Estimation Algorithms with Spinal Anterior-Posterior X-Ray Images: The AASCE2019 Challenge
Liansheng Wang, Cong Xie, Yi Lin, Hong-Yu Zhou, Kailin Chen, Dalong Cheng, Florian Dubost, Benjamin Collery, Bidur Khanal, Bishesh Khanal
Medical Image Analysis, 2021

2020 2020年

Comparing to Learn: Surpassing ImageNet Pretraining on Radiographs by Comparing Image Representations
Hong-Yu Zhou, Shuang Yu, Cheng Bian, Yifan Hu, Kai Ma, Yefeng Zheng
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020
Difficulty-Aware Glaucoma Classification with Multi-Rater Consensus Modeling
Shuang Yu, Hong-Yu Zhou, Kai Ma, Cheng Bian, Chunyan Chu, Hanruo Liu, Yefeng Zheng
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020
A Macro-Micro Weakly-Supervised Framework for AS-OCT Tissue Segmentation
Munan Bian, Cheng Bian, Donghuan Lu, Hong-Yu Zhou, Shuang Yu, Chenglang Yuan, Yang Guo, Yaohua Wang, Kai Ma, Yefeng Zheng
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2020
Efficient and Effective Training of COVID-19 Classification Networks with Self-Supervised Dual-Track Learning to Rank
Yuexiang Li, Dong Wei, Jiawei Chen, Shilei Cao, Hong-Yu Zhou, Yanchun Zhu, Jianrong Wu, Lan Lan, Wenbo Sun, Tianyi Qian
IEEE Journal of Biomedical and Health Informatics, 2020

2019 2019年

Seg4Reg Networks for Automated Spinal Curvature Estimation
Yi Lin, Hong-Yu Zhou, Kai Ma, Xin Yang, Yefeng Zheng
International Workshop and Challenge on Computational Methods and Clinical Applications for Spine Imaging, 2020
CodeAttention: Translating Source Code to Comments by Exploiting the Code Constructs
Wenhao Zheng, Hong-Yu Zhou, Ming Li, Jianxin Wu
Frontiers of Computer Science, 2019

2018 2018年

ThiNet: Pruning CNN Filters for a Thinner Net
Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie, Jianxin Wu, Weiyao Lin
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018
Age Estimation Using Expectation of Label Distribution Learning
Bin-Bin Gao, Hong-Yu Zhou, Jianxin Wu, Xin Geng
International Joint Conference on Artificial Intelligence (IJCAI), 2018

2017 2017年

Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors
Hong-Yu Zhou, Bin-Bin Gao, Jianxin Wu
Proceedings of the IEEE International Conference on Computer Vision, 2017

Teaching 教学

Current Courses (2024-2025) 当前课程(2024-2025)

BME 501: Deep Learning for Medical Image Analysis BME 501:医学图像分析的深度学习

Fall 2024 - Graduate level course covering fundamental and advanced topics in medical image analysis using deep learning. 2024秋季 - 研究生课程,涵盖使用深度学习进行医学图像分析的基础和高级主题。

  • Convolutional Neural Networks for Medical Imaging 医学影像的卷积神经网络
  • Transformer Architectures in Healthcare 医疗保健中的Transformer架构
  • Self-supervised Learning Methods 自监督学习方法
  • Clinical Applications and Case Studies 临床应用与案例研究

BME 302: Introduction to Medical AI BME 302:医学人工智能导论

Spring 2025 - Undergraduate course introducing AI applications in medicine and healthcare. 2025春季 - 本科生课程,介绍人工智能在医学和医疗保健中的应用。

Student Advising 学生指导

  • Primary advisor for Ph.D. students in Biomedical Engineering 生物医学工程博士生的主要导师
  • Co-advisor for students in Computer Science and Electronic Engineering 计算机科学和电子工程学生的合作导师
  • Mentor for undergraduate research projects 本科生研究项目导师

Teaching Philosophy 教学理念

I believe in fostering a learning environment that combines theoretical foundations with practical applications. My courses emphasize hands-on experience with real medical data and encourage students to think critically about the ethical and clinical implications of AI in healthcare. 我相信营造一个将理论基础与实际应用相结合的学习环境。 我的课程强调使用真实医学数据的实践经验,并鼓励学生批判性地思考人工智能在医疗保健中的伦理和临床影响。

Join Our Lab 加入我们

We Are Recruiting! 我们正在招聘!

We are actively looking for talented and motivated individuals to join our research group. We offer a collaborative environment, cutting-edge research projects, and opportunities to make real impact in healthcare. 我们正在积极寻找有才华和积极性的人才加入我们的研究团队。 我们提供协作环境、前沿研究项目以及在医疗保健领域产生实际影响的机会。

We also very much welcome people with clinical medical backgrounds or wearable device development experience to join. 我们也非常欢迎具有临床医学背景或者可穿戴设备开发经验的人加入。

Ph.D. Positions 博士生职位

Requirements: 要求:

  • Strong background in computer science, electrical engineering, biomedical engineering, or related fields 计算机科学、电子工程、生物医学工程或相关领域的扎实背景
  • Experience with machine learning and deep learning frameworks 机器学习和深度学习框架的使用经验
  • Programming proficiency in Python, PyTorch/TensorFlow 熟练掌握Python、PyTorch/TensorFlow编程
  • Excellent communication skills in English 优秀的英语沟通能力
  • Passion for medical AI research 对医学AI研究充满热情

Application: Please send your CV, transcripts, and a brief research statement to hongyu_zhou@tsinghua.edu.cn 申请:请将您的简历、成绩单和简短的研究陈述发送至 hongyu_zhou@tsinghua.edu.cn

Master Students 硕士生

Opportunities: 机会:

  • Thesis projects on medical image analysis 医学图像分析的论文项目
  • Clinical AI system development 临床AI系统开发
  • Collaboration with leading hospitals 与顶级医院合作

Note: Priority given to Tsinghua students, but exceptional external candidates are welcome to apply. 注意:优先考虑清华学生,但欢迎优秀的外部候选人申请。

Undergraduate Research 本科生研究

Research Assistant Positions: 研究助理职位:

  • Summer research internships 暑期研究实习
  • Senior thesis projects 毕业论文项目
  • Part-time research during academic year 学年期间的兼职研究

We welcome motivated undergraduates who want to gain research experience in medical AI. 我们欢迎希望获得医学AI研究经验的积极主动的本科生。

Postdoctoral Fellows 博士后研究员

We seek postdocs with: 我们寻找具备以下条件的博士后:

  • Ph.D. in relevant fields 相关领域的博士学位
  • Strong publication record 优秀的发表记录
  • Independent research capabilities 独立研究能力
  • Interest in medical AI applications 对医学AI应用感兴趣

Benefits: Competitive salary, research funding support, and opportunities for career development. 待遇:有竞争力的薪资、研究资金支持和职业发展机会。

Contact 联系方式

Interested candidates please contact:
Prof. Hong-Yu Zhou
Email: hongyu_zhou@tsinghua.edu.cn
Tsinghua University, Beijing, China
有意者请联系:
周弘宇 教授
邮箱:hongyu_zhou@tsinghua.edu.cn
办公室:生物医学工程楼 301室
清华大学,北京,中国