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Abstract. We propose an interesting challenge: recovering from aspect-
ratio distorted images based on their contents. Given a distorted image,
we want to construct a model to predict its original aspect ratio. Since
this is a general task, we build a database on top of Pascal VOC datasets.
On the base of recent deep convolutional neural networks (CNNs), we
present a multi-scale architecture and construct a spatial pooling layer to
overcome the problem. By utilizing the multi-level and spatial informa-
tion, our approach surpasses other methods by a large margin. Towards
a better understanding of this task, we also perform detailed studies on
experimental results.
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1 Introduction

In recent years, CNNs have achieved great success in various image recognition
tasks, e.g., object detection [5], semantic segmentation [6]. Thanks to these great
achievements, deep learning is trying to bridge the gap between computers and
humans. In image classification, we have surpassed human-level performance on
the famous ImageNet challenge [7], and scene classification tasks [8] are no more
difficult for deep CNNs [10] [9].

However, there are still doubts that high recognition performance means the
computer has the same ability to understand image contents as we do. In this
paper, we try to propose a new problem which is pretty normal for humans: pre-
dicting the right aspect ratio of a single image. Given a distorted image, human is
able to give its suitable aspect ratio (Figure 1a). We argue that this ability relies
on the recognition of the shapes of typical objects. For example, in Figure 1a,
we can tell that the rightmost image is correct because we know what a person
and a dog usually look like, which is a normal ability that all of us should have.
Now suppose that we have tens of thousands images with distortion, how can
we get back their original versions? Are our computers able to make predictions
as accurate as we do? We will talk about this question in the rest of this paper.

In this paper, we try to give a thorough investigation of answers to the
question above. Our contributions can be summarized as follows:
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0.59 : 1

1.03 : 1

0.71 : 1

(a) Recover the original image

0.75 : 1
1.58 : 1 ?

(b) Guess what is the aspect ratio?

Fig. 1: Predict the aspect ratio: (a) Considering a distorted image, we can recover
the original image by predicting the right aspect ratio (the right picture). (b)
Can you guess the original ratio? (answer: 1.33 : 1) Best viewed in color.

• For the first time, we propose to predict the original aspect ratio given a
distorted image which can be regarded as an understanding towards image
contents.

• We propose a multi-scale CNN architecture with spatial pooling layers to
solve this problem and the proposed approach achieves better results over
other traditional methods.

• Towards a better understanding of this problem, we build a new dataset with
detailed annotations on top of existing datasets. We also perform ablation
studies and statistical analysis on experimental results.

2 Related Work

There have been some works focusing on image transformation based on image
contents [11] [12] [16]. He et al. [12] proposed a warping method that creates
the perception of rotation and avoids cropping. They designed an optimization-
based method that preserves the rotation of horizontal/vertical lines, maintain-
s the completeness of the image content, and reduces the warping distortion.
Hoiem et al. [11] presented a fully automatic method for creating a 3D model
from a single photograph. The main insight is that instead of attempting to re-
cover precise geometry, they statistically modeled geometric classes defined by
their orientations in the scene. Li et al. [16] used a geodesic-preserving method
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for content-aware image warping. However, these works only employed image
geometry while ignoring semantic information. Different from these tasks, our
goal is to recover the correct aspect ratio which needs better representations on
semantic level.

Multi-scale CNNs have been developed to utilize multi-level features to get
better performance, e.g., depth estimation [14], image classification [2], object
detection [13] [15]. Eigen et al. [14] employed two deep network stacks: one that
makes a coarse global prediction based on the entire image, and another that
refines this prediction locally. Kim et al. [13] applied multi-scale hand-crafted
features to car detection while Kong et al. [15] used multi-layers to extract CNN-
based representations for object detection. Yang et al. [2] made a complete in-
vestigation into the details about multi-scale CNNs which somehow helps us
design our deep model. However, the main difference is that our model uses spa-
tial pooling to utilize spatial information apart from multi-level representations
which make our model get better results over other multi-scale approaches.

3 Predicting the Aspect Ratio

We propose to use a multi-scale CNN to directly perform ratio regression. The
overview of the model is shown in Figure 2. Note that we build model based on
VGG-16 [4] but similar idea can be easily applied to other popular architectures
(e.g., ResNet [17]). We argue that multi-scale and spatial information do help
predict the original aspect ratio because they utilize low-level and mid-level
representations.

3.1 Architecture

As shown in Figure 2, we mainly extract features from relu layers right before
the pooling layers. The reason why we choose to use the last relu layer of each
convolution block is that they can be regarded as the bottleneck of each block and
have the ability to describe the whole block. Then we perform an operation called
Spatial Pooling on these predetermined relu layers. The goal of this operation is
to make use of spatial representations. More details about this block are given
in Figure 3. Feature maps for specific scale are split into 2×2 regions and a max
pooling layer is added on top of each region. A convolution layer and a relu layer
are followed to extract feature vectors with fixed lengths. These feature vectors
are then add together to produce the final feature representations.

We take L1 distance as the loss function,

`(X,y) =

N∑
i=1

|fθ(xi)− yi| (1)

where fθ(·) represents the output of the network, xi and yi are input image and
its label, X and y represent images and labels in the dataset, N is the number
of training images. In our experiments, we use the original aspect ratio of each
image as its label.
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Fig. 2: An overview of our multi-scale model. We create a Spatial Pooling block
which is able to utilize spatial information. We perform feature extraction on
ReLU layers right before the pooling operations. Note that we use 4 scales in
practice while this figure only shows 3 scales.
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Fig. 3: On each feature map, we split the whole space into 2×2 regions and
perform max pooling on each subregion. The pooling layer is then followed by
a convolution layer and a relu layer to extract feature vectors. The number of
regions can be a free choice and we also perform ablation experiments on different
choices (in Table 3).
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3.2 Implementation details

We implement the whole network using MatConvNet [19]. In our experiments, we
build a 4-scale model (conv2, conv3, conv4 and conv5). In spatial pooling block,
we split the whole image into 2×2 regions. We also use batch normalization on
top of the loss function to make the training process easier. The learning rate is
10−2 and gradually reduces to 10−5 using logspace in 20 epochs. Details of the
model architecture can be found in Table 1.

Table 1: Architecture details of the proposed CNN. You can go through the
table from top to bottom which follows the implementation order. Note that
parameters of batch normalization are the same as those in [18].

scale-1 scale-2 scale-3 scale-4 filter size

relu2 2 relu3 3 relu4 3 relu5 3 None

Spatial Max Pooling (2×2 regions) None

Conv Conv Conv Conv 2×2×{128, 256, 512, 512}×512

BatchNorm BatchNorm BatchNorm BatchNorm None

ReLU ReLU ReLU ReLU None

Sum None

Conv 1×1×512×1

BatchNorm None

L1 Distance None

4 Experiments

4.1 Dataset

For the training and test data, we directly use the Pascal VOC 2007 and 2012
datasets [1] which are derived from the famous PASCAL Visual Object Classes
(VOC) Challenge. Although it is possible to employ any other datasets instead,
we choose the VOC series because of their detailed labels which can help us to
analyze the experimental results. In practice, we use the test set of VOC2007
(4,952) as the test data while the rest images (16,551) are treated as training
images. During the training process, we only perform left-right flip on each input
image without any other data augmentation methods.

4.2 Baseline models

AlexNet, VGG-16 and ResNet-101. In AlexNet and VGG-16, we trans-
form “fc8” from 1×1×4096×1000 to 1×1×4096×1 and replace dropout with
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batch normalization. In ResNet-101, we directly change the number of final lay-
er output from 1000 to 1. We also use batch normalization before the L1 loss to
facilitate the training. The learning rate is 10−3 and gradually reduces to 10−5

using logspace in 20 epochs.
MS-VGGs. These models are all built based on VGG-16. We construct the

main bodies of different variants following the same strategy stated in Table 1.
It is worth noting that these variants are trained with the same learning rate as
told in Sec 3.2.

4.3 Experimental results

The regression results of different models are reported in Table 2, and a few
interesting points can be observed from it.

Table 2: Experimental results. We mainly perform experiments on AlexNet and
VGG-based models. We use MS- to represent our multi-scale models. SP: spatial
pooling (default 2×2); Scales: layers involved in multi-scale CNN; Average
Loss: average L1 distance loss on test set (the lower the better).

Method SP Scales Average Loss

AlexNet w/o w/o 0.27

VGG-16 w/o w/o 0.18

ResNet-101 w/o w/o 0.15

MS-VGG w conv5, 4 0.153

MS-VGG w conv5, 4, 3 0.127

MS-VGG w conv5, 4, 3, 2 0.112

MS-VGG w Conv5, 4, 3, 2, 1 0.129

MS-VGG w/o conv5, 4, 3, 2 0.126

MS-VGG with 2 scales performs as well as ResNet-101. MS-VGG
with conv5, 4 gives 0.153 average loss which is only 0.03 higher than ResNet-
101. This phenomenon tells us that multi-scale representations are able to help to
recover from distorted images. Note that MS-VGG with 3 scales surpass ResNet-
101 by 0.023 which implies that multi layers fusion might have a larger influence
on results than simply increasing the depth of network.

More scales do not mean better performance. 3-scale MS-VGG exceed
2-scale model by 0.026 while 4-scale network achieves the best result. However,
MS-VGG with full scales (5 scales) not only performs worse than 4-scale model
but also loses out to 3-scale network. We can see that more layers might not
lead to better results. We argue the reason might be that conv1 are too low to
provide valuable representations.
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Spatial pooling makes MS-VGG more powerful. MS-VGG with spatial
pooling gets 0.014 points lower than that without this operation which suggests
that spatial information might contribute to our task. By performing pooling on
different regions, we are able to make a fusion of different positions in addition
to different feature levels (multi-scale).

Table 3: Comparison between different spatial strategies. Region size tells us
how to split the feature map.

Base model Region size Average Loss

MS-VGG 2×2 0.112

MS-VGG 3×3 0.105

MS-VGG 4×4 0.100

MS-VGG 5×5 0.102

We also compare different spatial pooling strategies and report the compar-
ison results in Table 3. MS-VGG with 5×5 shows higher loss than 4×4 model
which implies that more regions might not mean better performance.

4.4 Results analysis

In Figure 4, we gives an analysis on the results produced by MS-VGG with 4
scales (2×2 regions). Our goal is to find if there exists correlation between the
number of instances and high-quality predictions. By saying high-quality predic-
tions, we mean those images whose L1 loss are lower than 0.03. In Figure 4a,
we partition the test set (4,952 images) according to the number of instances in
each image. Note that We can tell that images with few instances take the main
part. As shown in Figure 4b, the percentage of high-quality outputs are almost
the same among different types of images with specific number of instances. This
might be a little surprising result which suggests that the number of objects has
nothing to do with the difficulty of recovering the original images.

Table 4: The percentage of high-quality predictions in different partitions of
original image aspect ratios.

0.2∼0.6 0.6∼1.0 1.0∼1.2 1.2∼1.4 1.4∼1.6 1.6∼1.8

0.0435 0.1366 0.1275 0.3346 0.1514 0.0122

Another question is: what is the relationship between the difficulty of recovery
and the original image aspect ratio? To answer this question, we also make an
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(a) Test set and experimental results
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(b) Percentage of high-quality predictions

Fig. 4: (a) We compare the number of instances and high-quality predictions. The
blue and yellow histograms represent the number of images in test set and high-
quality predictions, respectively.(b) We calculate the ratio between the number
of test images and high-quality images.

investigation and show the results in Table 4, from which we can see that images
whose aspect ratios are between 1.2 and 1.4 are the easiest ones to be recovered.
Large aspect ratios (e.g., 1.6∼1.8) make it difficult to recover from distorted
images.

We also show some predictions of our CNN model in Figure 5. Although the
network still feels hard to recover images with large aspect ratios (row 1, 3, 6
in Figure 5), most of its outputs are at least acceptable and some of them are
undistinguishable (row 2, 4, 5).

5 Conclusion

We propose to recover from aspect-ratio distorted images based on image con-
tents. To solve this problem, we build a multi-scale architecture with spatial
pooling that performs well on the recovery task. We perform complete ablation
studies on details of the model architecture. Finally, we discuss the difficulty
of predicting the original aspect ratio and try mining its relations with other
factors, e.g., the number of instances.
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